If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+61x=180
We move all terms to the left:
3x^2+61x-(180)=0
a = 3; b = 61; c = -180;
Δ = b2-4ac
Δ = 612-4·3·(-180)
Δ = 5881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(61)-\sqrt{5881}}{2*3}=\frac{-61-\sqrt{5881}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(61)+\sqrt{5881}}{2*3}=\frac{-61+\sqrt{5881}}{6} $
| 2(p7)=8 | | 19k-12k=7 | | -8(2n+3)-2=8n+8(3-3n) | | f=11=-21 | | 8(9r-3)=(-240) | | 5x=8=0 | | f=11=121 | | 8=6m-2m | | 2(x-3)-(x+4)=15 | | 26=6x+5-3 | | -15=-8k+3k | | 2h-+3/4=1/4(h+15) | | 37=2(x+5) | | 4x³+28x+24=0 | | 6x+34=2x+15 | | 0=-8x-7x | | 1+4x=5+7x | | 3^2x-1=20 | | 23+r=50 | | 4j+3=3j | | -57=3-4x | | 3m-4=3(m-2)+2 | | -25=-2r-1 | | X-10+4x-25+x+5=180 | | x-(-13)=-3 | | 5-3+2=4x+7 | | 4^x-1×(0.5)3-2x=1/18^-x | | 6x=-4+20 | | m/3+m/6=1 | | -7(3-2a)=-27+8a | | 300x/20+10=x+3 | | 5x+17=7-15 |